
“Exploit creation – The random approach”

“Playing with random to build exploits”

Sunday, September 21, 2008
By Nelson Brito <nbrito@sekure.org>

Introduction

It is just a matter of time to get things worse on the Internet. We saw worms getting more
and more sophisticated in last decade, and, believe me, it could be worst. Nowadays we
have botnets and a lot of worms and the respective variants, but what if a stealth worm
reaches the Internet today? Are we prepared to deal with this kind of threat? Are we walk
to the right direction to get this kind of threat controlled in a short period of time? Do we
remember 2003?

That said there is no other answer than: No, we are not prepared and we will surrender if
such bad thing happens again. Why am I saying that? You will figurate.

Just for the records: I will not write that much, even because it is very, very simple, and I
do believe some one else will write a good stuff for academic audiences.

If you still believe in Santa Claus, please, stop reading right now, because this paper will
show that bad things can get worse, and worse, and worse, if we are not paying attention
on the signs. And according to some people: it is all old news, and the techniques were
already presented by someone, somewhere. Ok, then!

What happened during 2003?

Two incredible things happened:

1. Slammer was the very first Flash Worm, incredible fast in its dissemination, it only
took 15 minutes to crash all the Internet infra-structure and let us know that a new
age was coming out.

2. Blaster was the very first worm targeting almost all Microsoft Windows OS
versions, incredible infecting machines around the world. After Blaster we saw
Sasser, and, apparently, underground became to use a “worm template” to
make new worms dissemination.

These two facts combined could give us a good lesson. But, even after 1988, we didn't
learn how to deal with worms and I think we have a long, long path to reach this point. So,
imagine a worm using polymorphic techniques. It is the worst nightmare we couldn’t even
imagine.

Polymorphic Code

This is not a new topic and some researchers have been talking about this for years and
years, but all our attention was gave to the shellcode. And even during my research, when
I talked to someone about the perspective of having a real polymorphic code, people
always got confused with polymorphic shellcode.

No, I am not writing another paper about polymorphic shellcode, there are too many
papers flying around since ADM created ADMutate, good papers about nop sled, jmp sled,
junk code insertion, etc… I am writing about a real polymorphic code: a code that every
time it executes it will have a new appearance, a new fingerprint, being almost
unpredictable, and, yes, I will use some of the previous techniques to move forward and
step ahead creating a real polymorphic attack.

I have sent the ENG code already, but this is a paper to show what the techniques are and
the possible damages can be caused if hackers apply such techniques in their codes.

Polymorphic code means that a code will change every time it executes, making it
unpredictable. What we have, so far, are static codes, and I never saw any “dynamic” code
exploiting any vulnerability. That is the reason some IPS/IDS can easily add signatures.

ENG (Encore Next Generation) Techniques

First of all, to make a polymorphic code we have to be sure we have all the requirements
to achieve the concept that a polymorphic code must be unpredictable, and it means
random. I choose the MS02-0391, because I have all the requirements for this proof of
concept:

1. Microsoft Windows Buffer Overflow2;
2. Buffer to overflow is not too big;
3. More than just one Return Address3;
4. Incredible high number of writable addresses only in SQLSORT.DLL4.

1 Microsoft SQL Server Buffer Overflow, by David Licthfield.
2 “Win32 Buffer Overflows (Location, Exploitation and Prevention)”, issue 55, article 15, by Barnaby Jack (dark spriti).
3 In fact, just in SQLSORT.DLL there are four (04) return addresses, two are public known: 0x42b48774 and 0x42b0c9dc.
4 Read the The Shellcode’s Handbook, page 125, for further information.

MS02-039 Exploit Structure

Before we start talking about the techniques applied in ENG, let’s take a look on how the
exploit structure must be.

David Litchfield Very First Exploit

Attack Vector
BUFFER TO BE
OVERFLOWED

RETURN
ADDRESS

HUGE STRING
IAT

SQLSORT.DLL
SP0 SP1-2

AAAABBBB... 0x42b0c9dc
0x46454443
0x42410eeb

0x42ae7001 0x42ae7001 0x90

20 8 1 96 4 8 4 4 8

1 97 101 109 113 117 125

NEAR JUMP

STACK

SHELLCODE

WIRETABLE
ADDRESS

NOPs

David Litchfield (1st exploit)

 REACHED THE DEPTH

NETWORK CONDITIONS OF THE VULNERABILITY

IP Header UDP Header
0x04

Slammer Worm

Attack Vector
BUFFER TO BE
OVERFLOWED

RETURN
ADDRESS

HUGE STRING
IAT

SQLSORT.DLL
SP0 SP1-2

0x01 0x42b0c9dc
0x46454443
0x42410eeb

0x42ae7001 0x42ae7001 0x90

20 8 1 96 4 8 4 4 8

1 97 101 109 113 117 125

SLAMMER ("THE WORM")
NETWORK CONDITIONS OF THE VULNERABILITY STACK

NOPs

SALLMER0x04

 REACHED THE DEPTH

IP Header UDP Header
NEAR JUMP

WIRETABLE
ADDRESS

HD Moore Metsploit Framework

Attack Vector
BUFFER TO BE
OVERFLOWED

RETURN
ADDRESS

HUGE STRING
IAT

SQLSORT.DLL
SP0 SP1-2

RANDOM 0x42b48774
0x69eb69eb
RANDOM

0x7ffde0cc 0x7ffde0cc RANDOM

20 8 1 96 4 8 4 4 100

1 97 101 109 113 117 217

HD Moore (Metasploit Framework)
NETWORK CONDITIONS OF THE VULNERABILITY

IP Header UDP Header
0x04

NEAR JUMP
WIRETABLE ADDRESS

NOPs

STACK

SHELLCODE

 REACHED THE DEPTH

Now, we know how we must build the exploit, and I think we can do a great job
randomizing all the fields. Here are the fields ENG needs to deal with: attack vector,
buffer, return address, jumps, writable address, nops, and shellcode.

Attack Vector

For this vulnerability there are three vectors5:

1. 0x04: Stack Based Buffer Overflow;
2. 0x08: Heap Based Buffer Overflow;
3. 0x0a: Denial of Service.

5 http://www.blackhat.com/presentations/bh-asia-02/bh-asia-02-litchfield.pdf.

Buffer6

To fill the buffer, it does not need to be static data, so ENG uses random data to fill the
entire buffer, using a very, very simple technique that any student is able to apply while
learning C programming language:

1. Check the length of buffer to overflow: in this case it is 96 bytes;
2. Make a choice: lower case or mixed case;
3. Use randomized data to fill it up: lower case (0x41 to 0x5a) and mixed case

(0x41 to 0x5a for odds and 0x61 to 0x7a for evens)

Return Address7

The return address in any Buffer Overflow exploitation is the key to have the control of the
execution flow, and that is very well known since Aleph1’s article8. As I mentioned above,
a good start to figurate out if ENG can apply polymorphism in an exploit is check how many
return addresses it will be able to use in its code.

In this particular vulnerability there, at least, two public return addresses: David Litchfield’s
0x42b48774 (“call esp” @ SQLSORT.DLL”) and MSF’s 0x42b0c9dc (“jmp esp”
@ SQLSORT.DLL). However, there are much more DLLs we can try to find new return
addresses, and we are not sure that there are no more return addresses in this particular
DLL, yet.

From my research, I found two more return addresses in the SQLSORT.DLL and there are
much more return addresses in others DDLs. The best way to find return addresses is
launching your preferred disassembler and search for them, and the easiest way to find a
huge list of return address is use someone’s research. In this case I have found a huge
number of possible return addresses using the great OpcodeDB9, by HD Moore and Matt
Miller.

6 The same piece of code can be used to fill the nops’ field, further information is available in this document.
7 Some people use the word Offset instead of Return Address.
8 Smashing The Stack For Fun And Profit, issue 49, article 14, by Elias Levy (Aleph1).
9 http://www.metasploit.com/opcodedb.

Here is some possible return addresses and respective Microsoft Windows OS version:

1. Microsoft Windows 2000 SP0:

• 0x750362c3 (“jmp esp” @ ws2_32.dll)
• 0x776167d1 (“jmp esp” @ shell32.dll)
• 0x77686c38 (“jmp esp” @ shell32.dll)
• 0x776f0940 (“jmp esp” @ shell32.dll)
• 0x77755f6d (“jmp esp” @ shell32.dll)
• 0x77797c4d (“jmp esp” @ shell32.dll)
• 0x777b5313 (“jmp esp” @ shell32.dll)
• 0x777b5af7 (“jmp esp” @ shell32.dll)
• 0x77e33f4d (“jmp esp” @ user32.dll)
• 0x77e33f69 (“jmp esp” @ user32.dll)
• 0x77e33f6d (“jmp esp” @ user32.dll)
• 0x77e3c289 (“jmp esp” @ user32.dll)
• 0x77f8948b (“jmp esp” @ ntdll.dll)
• 0x77fb2b36 (“jmp esp” @ ntdll.dll)
• 0x775be214 (“call esp” @ shell32.dll)
• 0x775e5cc1 (“call esp” @ shell32.dll)
• 0x7760b785 (“call esp” @ shell32.dll)
• 0x7766d1b9 (“call esp” @ shell32.dll)
• 0x776ee139 (“call esp” @ shell32.dll)
• 0x776ee13d (“call esp” @ shell32.dll)
• 0x776ee141 (“call esp” @ shell32.dll)
• 0x776ee145 (“call esp” @ shell32.dll)
• 0x777334fd (“call esp” @ shell32.dll)
• 0x7773432d (“call esp” @ shell32.dll)
• 0x77755f95 (“call esp” @ shell32.dll)
• 0x777b5527 (“call esp” @ shell32.dll)
• 0x77ea162b (“call esp” @ kernel32.dll)

2. Microsoft Windows 2000 SP1:

• 0x69801365 (“jmp esp” @ shell32.dll)
• 0x69808767 (“jmp esp” @ shell32.dll)
• 0x698370d6 (“jmp esp” @ shell32.dll)
• 0x698e1036 (“jmp esp” @ shell32.dll)
• 0x6994f2e4 (“jmp esp” @ shell32.dll)
• 0x69952208 (“jmp esp” @ shell32.dll)
• 0x699b7835 (“jmp esp” @ shell32.dll)
• 0x699f9515 (“jmp esp” @ shell32.dll)
• 0x69a16bdb (“jmp esp” @ shell32.dll)
• 0x69a173bf (“jmp esp” @ shell32.dll)
• 0x75035173 (“jmp esp” @ ws2_32.dll)
• 0x77e3cb4c (“jmp esp” @ user32.dll)
• 0x77e4ff15 (“jmp esp” @ user32.dll)
• 0x77e53e4b (“jmp esp” @ user32.dll)
• 0x77e8898b (“jmp esp” @ kernel32.dll)
• 0x77f967ab (“jmp esp” @ ntdll.dll)
• 0x69866804 (“call esp” @ shell32.dll)

• 0x6994c199 (“call esp” @ shell32.dll)
• 0x6994c19d (“call esp” @ shell32.dll)
• 0x6994c1a1 (“call esp” @ shell32.dll)
• 0x6994c1a5 (“call esp” @ shell32.dll)
• 0x69994dc5 (“call esp” @ shell32.dll)
• 0x69995bf5 (“call esp” @ shell32.dll)
• 0x699b785d (“call esp” @ shell32.dll)
• 0x69a16def (“call esp” @ shell32.dll)
• 0x77e9eba1 (“call esp” @ kernel32.dll)

3. Microsoft Windows 2000 SP2:

• 0x77e2492b (“jmp esp” @ user32.dll)
• 0x77e3af64 (“jmp esp” @ user32.dll)
• 0x783d15fc (“jmp esp” @ shell32.dll)
• 0x7843f2e4 (“jmp esp” @ shell32.dll)
• 0x78442208 (“jmp esp” @ shell32.dll)
• 0x784a7835 (“jmp esp” @ shell32.dll)
• 0x784e9515 (“jmp esp” @ shell32.dll)
• 0x78506bdb (“jmp esp” @ shell32.dll)
• 0x785073bf (“jmp esp” @ shell32.dll)
• 0x7503431b (“call esp” @ ws2_32.dll)
• 0x77e27741 (“call esp” @ user32.dll)
• 0x77e8250a (“call esp” @ kernel32.dll)
• 0x782fb31b (“call esp” @ shell32.dll)
• 0x7835744b (“call esp” @ shell32.dll)
• 0x7843c199 (“call esp” @ shell32.dll)
• 0x7843c19d (“call esp” @ shell32.dll)
• 0x7843c1a1 (“call esp” @ shell32.dll)
• 0x7843c1a5 (“call esp” @ shell32.dll)
• 0x78484dc5 (“call esp” @ shell32.dll)
• 0x78485bf5 (“call esp” @ shell32.dll)
• 0x784a785d (“call esp” @ shell32.dll)
• 0x78506def (“call esp” @ shell32.dll)

4. Microsoft Windows 2000 SP3:

• 0x77e2afc5 (“jmp esp” @ user32.dll)
• 0x77e2afc9 (“jmp esp” @ user32.dll)
• 0x77e2afe5 (“jmp esp” @ user32.dll)
• 0x77e388a7 (“jmp esp” @ user32.dll)
• 0x783d3d81 (“jmp esp” @ shell32.dll)
• 0x784432e4 (“jmp esp” @ shell32.dll)
• 0x78446208 (“jmp esp” @ shell32.dll)
• 0x784ab835 (“jmp esp” @ shell32.dll)
• 0x784ed515 (“jmp esp” @ shell32.dll)
• 0x7850abdb (“jmp esp” @ shell32.dll)
• 0x7850b3bf (“jmp esp” @ shell32.dll)
• 0x77e1444c (“call esp” @ user32.dll)
• 0x77e3bc34 (“call esp” @ user32.dll)
• 0x77e3d3f7 (“call esp” @ user32.dll)

• 0x77e822ea (“call esp” @ kernel32.dll)
• 0x78358d28 (“call esp” @ shell32.dll)
• 0x78440199 (“call esp” @ shell32.dll)
• 0x7844019d (“call esp” @ shell32.dll)
• 0x784401a1 (“call esp” @ shell32.dll)
• 0x784401a5 (“call esp” @ shell32.dll)
• 0x78488dc5 (“call esp” @ shell32.dll)
• 0x78489bf5 (“call esp” @ shell32.dll)
• 0x784ab85d (“call esp” @ shell32.dll)
• 0x7850adef (“call esp” @ shell32.dll)

5. Microsoft Windows 2000 SP4:

• 0x77e14c29 (“jmp esp” @ user32.dll)
• 0x77e3c256 (“jmp esp” @ user32.dll)
• 0x782f28f7 (“jmp esp” @ shell32.dll)
• 0x78326433 (“jmp esp” @ shell32.dll)
• 0x78344d6f (“jmp esp” @ shell32.dll)
• 0x78344d83 (“jmp esp” @ shell32.dll)
• 0x78344d97 (“jmp esp” @ shell32.dll)
• 0x78344dd3 (“jmp esp” @ shell32.dll)
• 0x78344de7 (“jmp esp” @ shell32.dll)
• 0x78344dfb (“jmp esp” @ shell32.dll)
• 0x78344e23 (“jmp esp” @ shell32.dll)
• 0x78344e37 (“jmp esp” @ shell32.dll)
• 0x78344e4b (“jmp esp” @ shell32.dll)
• 0x78344e5f (“jmp esp” @ shell32.dll)
• 0x78344e73 (“jmp esp” @ shell32.dll)
• 0x78344e87 (“jmp esp” @ shell32.dll)
• 0x78344e9b (“jmp esp” @ shell32.dll)
• 0x78344eaf (“jmp esp” @ shell32.dll)
• 0x783d6ddf (“jmp esp” @ shell32.dll)
• 0x784452e4 (“jmp esp” @ shell32.dll)
• 0x78448208 (“jmp esp” @ shell32.dll)
• 0x784ad835 (“jmp esp” @ shell32.dll)
• 0x784ef515 (“jmp esp” @ shell32.dll)
• 0x7850cbdb (“jmp esp” @ shell32.dll)
• 0x7850d3bf (“jmp esp” @ shell32.dll)
• 0x783629d0 (“call esp” @ shell32.dll)
• 0x78442199 (“call esp” @ shell32.dll)
• 0x7844219d (“call esp” @ shell32.dll)
• 0x784421a1 (“call esp” @ shell32.dll)
• 0x784421a5 (“call esp” @ shell32.dll)
• 0x7848adc5 (“call esp” @ shell32.dll)
• 0x7848bbf5 (“call esp” @ shell32.dll)
• 0x784ad85d (“call esp” @ shell32.dll)
• 0x7850cdef (“call esp” @ shell32.dll)
• 0x7c4fedbb (“call esp” @ kernel32.dll)

Now, ENG has enough return addresses to make the choice randomized.

Jumps10

The first exploit and Slammer share the same “jmp short 0x0e”, and the MFS uses
“jmp short 0x69”. So, ENG still has more options in this case as well, and it uses the
range from “jmp short 0x10” to “jmp short 0x7f”, randomly.

Writable Address11

According to many papers about Win32 buffer overflows, and “The Shellcoder’s
Handbook”, ENG needs to set a memory space it can write to inject the shellcode. In this
case there are two approaches:

1. First exploit and Slammer uses 0x42ae7001 (SQLSORT.DLL);
2. MSF uses 0x7ffde0cc (“write to thread storage space ala msrpc”).

From my research, I found, just in SQLSORT.DLL, 25,878 “new” writable addresses, at
least: from 0x42afb1b8 (SQLSORT.DLL) to 0x42af4930 (SQLSORT.DLL). That is a
huge number of possible writable memory space ENG can use randomly.

The only thing ENG has to keep in mind is that it should use the writable address in two
four (04) bytes blocks: first four (04) bytes block targets the Microsoft SQL Server SP0,
and the second four (04) bytes block targets the Microsoft SQL Server SP1-2.

NOPs12

To fill the nops’ field, ENG uses the same simple technique used to fill up the buffer, but
here ENG has a problem, because it uses randomized jumps it must calculate the right
length, here is the formula: ((jmp >> 8) & 0xff) - (sizeof(int64_t) * 2).

1. Get the address value: ((jmp >> 8) & 0xff);
2. Decrement 128 bits: (sizeof(int64_t) * 2).

Right now, the nops’ field is able to be filled by random characters.

10 Keep in mind that this jump will influence the nops’ field.
11 I didn’t want to detail the aspects in this vulnerability, because it is pretty old and many people already know all them, but
in this case I must point one thing: there are, as HD Moore call them, bad characters we have to avoid. These bad
characters are: 0x00, 0x0d, 0x2f, 0x3a, and 0x5c. I believe it can be more, but I didn’t spend time to find them out and
assumed only these.
12 The same piece of code used to fill the buffer’s field.

Shellcode

There are good papers on that matter, and I don’t pretend to write a new document about
this. There are just a few comments about this:

1. ENG uses Alpha2.c13;
2. ENG uses only ASCII decoders, because the UNICODE decoders doesn’t work

against this vulnerability;
3. ENG injects junk codes in each decoder it uses randomly, and it is good piece of

code to take a look (randnops.c), here some explanation:

• Ignore the “7QZ” and “IQZ”, they cannot be disturbed at all;
• Calculate the length of decoder, ignoring three bytes, as mentioned;
• Get random number between 0 and total length available, this will control

how many bytes will be injected;
• Get random number to determine the position of bytes to inject; this will

control the randomized positions bytes will be injected;
• Check if the position is not already in use, if so skip the position and try

again;
• With the number of bytes to inject and the positions, inject “A” in each

position.

4. ENG uses only one “GetPC”14 code, and it is necessary when using Alphanumeric
Shellcodes15.

ENG Exploit Structure

Attack Vector
BUFFER TO BE
OVERFLOWED

RETURN
ADDRESS

HUGE STRING

SQLSORT.DLL
NTDLL.DLL
USER32.DLL

KERNEL32.DLL
SHELL32.DLL
WS2_32.DLL

SP0 SP1-2

RANDOM RANDOM RANDOM RANDOM RANDOM RANDOM

20 8 1 96 4 8 4 4 N

1 97 101 109 113 117 RANDOM

Nelson Brito (Encore Project)
NETWORK CONDITIONS OF THE VULNERABILITY STACK

NOPs

SHELLCODE
(RANDOM)

0x04

 REACHED THE DEPTH

IP Header UDP Header
NEAR JUMP

WIRETABLE ADDRESS

Conslusions

I do hope I could proof all the concepts behind this idea, and I will let the conclusions for
anyone whom read this paper. It is too early to get the real impacts this technique can
bring to next threats coming out, and forgive me for my poor English. Send any feedback,
comments, flames and ideas to: nbrito@sekure.org or nbritoo@gmail.com.

Some greetings to: Emanuel Almeida (corb), Rafael Granha (netrap), Marcelo Bezerra,
Raphael D’Avila, Sekure SDI members, Neel Mehta, David Maynor, Mark Dowd, Wallace
John (negão), Nilson Brito, Carla Brito, Carlos Rienzi (hijo), and Daniel Austin.

13 Copyright© 2003, 2004 by Berend-Jan Wever.
14 That is only piece of code intentionally left static, but you can apply any other good polymorphic shellcode engine.
15 “Applying Polymorphism to Alphanumeric IA-32/IA-32e/AMD-64 Shellcode”, by Matt Conover.

mailto:nbrito@sekure.org
mailto:nbritoo@gmail.com

Collision Course

The main goal of “Collision Course” is to help people to understand and evaluate
the security approach some IPS/IDS still have: Pattern Matching. But, after re-started the
research I realized that it could be more than just by-pass an IPS/IDS. Both NNG (Numb
Next Generation) and ENG (Encore Next Generation) are available @
PacketStorm16.

1. NNG: http://www.packetstormsecurity.com/UNIX/IDS/nng-4.13r-public.rar
2. ENG: http://www.packetstormsecurity.com/UNIX/IDS/eng-4.23-public.rar

16 http://www.packetstormsecurity.nl/

http://www.packetstormsecurity.com/UNIX/IDS/nng-4.13r-public.rar
http://www.packetstormsecurity.com/UNIX/IDS/eng-4.23-public.rar

	“Exploit creation – The random approach”
	“Playing with random to build exploits”
	Introduction
	What happened during 2003?
	Polymorphic Code
	ENG (Encore Next Generation) Techniques
	MS02-039 Exploit Structure
	David Litchfield Very First Exploit
	Slammer Worm
	HD Moore Metsploit Framework

	Attack Vector
	Buffer
	Return Address
	Jumps
	Writable Address
	NOPs
	Shellcode
	ENG Exploit Structure
	Conslusions

